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Received 20 October 2004; received in revised form 21 March 2005
Available online 23 May 2005

Dedicated to J.G. Simmonds on the occasion of his 70th birthday
Abstract

The recent developments in smart structures technology have stimulated renewed interest in the fundamental theory
and applications of linear piezoelectricity. In this paper, we investigate the decay of Saint-Venant end effects for plane
deformations of a piezoelectric semi-infinite strip. First of all, we develop the theory of plane deformations for a general
anisotropic linear piezoelectric solid. Just as in the mechanical case, not all linear homogeneous anisotropic piezoelectric
cylindrical solids will sustain a non-trivial state of plane deformation. The governing system of four second-order partial
differential equations for the two in-plane displacements and electric potential are overdetermined in general. Sufficient
conditions on the elastic and piezoelectric constants are established that do allow for a state of plane deformation. The
resulting traction boundary-value problem with prescribed surface charge is an oblique derivative boundary-value
problem for a coupled elliptic system of three second-order partial differential equations. The special case of a piezo-
electric material transversely isotropic about the poling axis is then considered. Thus the results are valid for the hex-
agonal crystal class 6mm. The geometry is then specialized to be a two-dimensional semi-infinite strip and the poling
axis is the axis transverse to the longitudinal direction. We consider such a strip with sides traction-free, subject to zero
surface charge and self-equilibrated conditions at the end and with tractions and surface charge assumed to decay to
zero as the axial variable tends to infinity. A formulation of the problem in terms of an Airy-type stress function
and an induction function is adopted. The governing partial differential equations are a coupled system of a fourth

and third-order equation for these two functions. On seeking solutions that exponentially decay in the axial direction
one obtains an eigenvalue problem for a coupled system of fourth and second-order ordinary differential equations. This
problem is the piezoelectric analog of the well-known eigenvalue problem arising in the case of an anisotropic elastic
strip. It is shown that the problem can be uncoupled to an eigenvalue problem for a single sixth-order ordinary differ-
ential equation with complex eigenvalues characterized as roots of transcendental equations governing symmetric and
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anti-symmetric deformations and electric fields. Assuming completeness of the eigenfunctions, the rate of decay of end
effects is then given by the real part of the eigenvalue with smallest positive real part. Numerical results are given for
PZT-5H, PZT-5, PZT-4 and Ceramic-B. It is shown that end effects for plane deformations of these piezoceramics pen-

etrate further into the strip than their counterparts for purely elastic isotropic materials.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The recent developments in smart structures technology have stimulated renewed interest in the funda-
mental theory and applications of linear piezoelectricity (see, e.g., Eringen and Maugin, 1990; Ikeda, 1996
for a comprehensive treatment of the basic theory). In this paper, we are concerned with a specific issue for
linear homogeneous piezoelectric solids, namely investigation of the decay of Saint-Venant end effects for
plane deformations of a semi-infinite strip.

Saint-Venant�s principle and related issues for elasticity theory have been extensively studied (for re-
views, see, e.g., Horgan and Knowles, 1983; Horgan, 1989, 1996a,b; Flavin and Rionero, 1996; Horgan
and Carlsson, 2000) but it is only relatively recently that analogous questions for piezoelectricity have been
investigated. The three-dimensional piezoelectric cylinder problem has been examined by Batra and Yang
(1995), Batra and Zhong (1996), Bisegna (1998) and Borrelli and Patria (1999) while anti-plane shear prob-
lems have been studied by the present authors in Borrelli et al. (2001, 2002, 2003, 2004). The plane problem
has been investigated by Fan (1995), by Ruan et al. (2000) and by Tarn and Huang (2002), who also con-
sider multilayered piezoelectric laminates.

In the next section, we develop the theory of plane deformations for a general anisotropic linear piezo-
electric solid. Just as in the mechanical case (see, e.g., Horgan and Miller, 1994; Horgan, 1995; Ting, 1996),
not all linear homogeneous anisotropic piezoelectric cylindrical solids will sustain a non-trivial state of
plane deformation. The governing system of four second-order partial differential equations for the two
in-plane displacements and electric potential are overdetermined in general. Sufficient conditions on the
elastic and piezoelectric constants are established that do allow for a state of plane deformation. These
are generalizations of the results of Horgan and Miller (1994) and Ting (1996) for the purely mechanical
case. The resulting traction boundary-value problem with prescribed surface charge is an oblique derivative
problem (i.e., the boundary conditions are not simply for the outward normal derivative) for a coupled sys-
tem of three second-order partial differential equations. Sufficient conditions for ellipticity of the system are
given. In Section 3, the special case of a piezoelectric material transversely isotropic about the poling axis is
considered. Thus the results subsequently obtained in this paper are valid for the hexagonal crystal class
6mm and numerical results are given later on for PZT-5H, PZT-5, PZT-4 and Ceramic-B. In Section 4,
the geometry is specialized to be a two-dimensional semi-infinite strip and the poling axis is the axis trans-
verse to the longitudinal direction. To examine the extent of Saint-Venant end effects, it is sufficient to con-
sider such a strip with sides traction-free and subject to zero surface charge and ‘‘self-equilibrated’’
conditions at the end. The tractions and surface charge are assumed to decay to zero as the axial variable
tends to infinity. This problem is investigated in detail in Sections 3 and 4 for the 6mm strip. A formulation
in terms of an Airy-type stress function and an induction function is adopted. The governing partial differ-
ential equations (see (25)) are a coupled system of a fourth and third-order equation for these two functions.
In Section 4, solutions are sought in the form of exponential functions of the axial variable multiplied by
unknown functions of the transverse variable. This, together with the boundary conditions, leads to an
eigenvalue problem for a coupled system of fourth and second-order ordinary differential equations. This
problem is the piezoelectric analog of the well-known eigenvalue problem arising in the case of an
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anisotropic elastic strip (see, e.g., Choi and Horgan, 1977; Crafter et al., 1993; Ting, 1996), which in turn is
a generalization of the celebrated Fadle-Papkovich problem for the isotropic solid. It turns out to be con-
venient to uncouple the problem to an eigenvalue problem for a single sixth-order ordinary differential
equation (see (33)). In Section 5, it is shown how the complex eigenvalues are characterized as roots of tran-
scendental equations governing symmetric and anti-symmetric deformations and electric fields. Assuming
completeness of the eigenfunctions, the rate of decay of end effects is then given by the real part of the eigen-
value with smallest positive real part. In Sections 6 and 7, numerical results are given for PZT-5H, PZT-5,
PZT-4 and Ceramic-B. It is shown that end effects for plane deformations of these piezoceramics penetrate

further into the strip than their counterparts for purely isotropic elastic materials, confirming results of Borr-
elli et al. (2001, 2002, 2003, 2004) for anti-plane shear and consistent with results of Ruan et al. (2000) and
of Tarn and Huang (2002) for the plane problem.
2. Plane deformations for linear anisotropic piezoelectric materials

Let X be an infinite cylinder X = {x 2 R3 : (x1,x3) 2 R} where R denotes the plane simply-connected
cross-section with boundary oR assumed sufficiently smooth. Let X be occupied by a homogeneous aniso-
tropic linearly piezoelectric material in equilibrium and suppose that the material is polarized along the x3
axis. On using the usual Cartesian tensor notation, the governing equations (in the absence of body forces
and free electric volume charge) are (Eringen and Maugin, 1990; Ikeda, 1996)
T ij;j ¼ 0; Di;i ¼ 0;

T ij ¼ Cijkluk;l þ ekiju;k; Di ¼ eijkuj;k � eiju;j;
ð1Þ
where Tij, Di denote, respectively, the components of the stress tensor and of the electric displacement vec-
tor, ui denote the components of the mechanical displacement vector field and u is the electric potential
from which the electric field E is given by E = �$u. The elastic, piezoelectric and electric permittivity con-
stants have the following symmetry properties:
Cijk‘ ¼ Cjik‘ ¼ Ck‘ij;

eijk ¼ eikj; eij ¼ eji.
ð2Þ
We now suppose that X is subjected to prescribed surface tractions t�i ¼ T ijnj and surface charge D* = Dini
on its lateral surface oX (n is the unit outward normal vector to oX) of the form
t�2 ¼ 0; t�1 ¼ t�1ðx1; x3Þ; t�3 ¼ t�3ðx1; x3Þ; D� ¼ D�ðx1; x3Þ. ð3Þ
The special form of the boundary conditions (3) would be expected to give rise to a deformation u and an
electric potential u of the form
u2 ¼ 0; u1 ¼ u1ðx1; x3Þ; u3 ¼ u3ðx1; x3Þ; u ¼ uðx1; x3Þ; 8ðx1; x3Þ 2 R. ð4Þ
A mechanical deformation u of the above form is called a plane deformation (see, e.g., Ting, 1996) and
(u1,u3,u) is a plane state for the piezoelectric body. Of course, other combinations of boundary conditions
could also be considered but we shall not pursue this here.

More generally, if one assumes from the outset a generalized plane deformation, i.e.,
ui ¼ uiðx1; x3Þ; i ¼ 1; 2; 3; u ¼ uðx1; x3Þ; ð5Þ
then one can prove that the boundary conditions (3) give rise to a plane deformation under suitable hypoth-
eses on the material constants Cijkl, ekij. In fact, under the assumptions (5), the governing equations become



946 A. Borrelli et al. / International Journal of Solids and Structures 43 (2006) 943–956
C2abcub;ca þ C2a2bu2;ba þ eb2au;ba ¼ 0;

Cdabcub;ca þ Cda2bu2;ba þ ebdau;ba ¼ 0;

eabcub;ca þ ea2bu2;ba � ebau;ba ¼ 0 on R;

ð6Þ
with d, a, b, c = 1,3. In the sequel Greek indices will always have the values 1, 3.

If we suppose that
C2abc ¼ 0; ea2b ¼ 0; ð7Þ

then (6) reduce to
C2a2bu2;ba ¼ 0;

Cdabcub;ca þ ebdau;ba ¼ 0;

eabcub;ca � eabu;ba ¼ 0 on R.

ð8Þ
With Eqs. (8) we associate the boundary conditions (3), i.e.
C2a2bu2;bna ¼ t�2 ¼ 0; ðCdabcub;c þ ebdau;bÞna ¼ t�d;

ðeabcub;c � eabu;bÞna ¼ D� on oR.
ð9Þ
Eq. (8)1 together with the boundary condition (9)1 gives
Z
R
C2a2bu2;au2;b dR ¼ 0.
If we assume that the elasticity tensor C is positive definite, we deduce that u2 is constant and so, without
loss of generality, we can assume that this constant is zero. Thus, the out-of-plane displacement has been

shown to be zero if the conditions (7) hold. Consequently, under these conditions, which are stronger than
those assumed by Tarn and Huang (2002), a pure plane state of deformation can occur. Thus, the conditions
(7) are sufficient in order for a plane state (4) to exist and the governing equations (8) reduce to
Cdabcub;ca þ ebdau;ba ¼ 0;

eabcub;ca � eabu;ba ¼ 0 on R;
ð10Þ
subject to the boundary conditions
ðCdabcub;c þ ebdau;bÞna ¼ t�d;

ðeabcub;c � eabu;bÞna ¼ D� on oR.
ð11Þ
Moreover, from (10), (11) and use of the divergence theorem, it follows that t�a and D* must satisfy the com-
patibility conditions
Z

oR
t�d ds ¼ 0;

Z
oR
D� ds ¼ 0 ð12Þ
in order for a solution to (10), (11) to exist. An analog of the foregoing result for the piezoelectric anti-plane
shear problem was obtained by Borrelli et al. (2002).

The problem (10), (11) is an oblique derivative boundary-value problem for a coupled system of three
second-order partial differential equations for the three unknowns u1, u3 and u. As we are concerned with
equilibrium problems only, we shall assume that (10) is an elliptic system. It can be shown that this is the
case if C and e satisfy the following conditions



A. Borrelli et al. / International Journal of Solids and Structures 43 (2006) 943–956 947
C1111 > 0; C1111C3333 � C2
1133 > 0;

C1313ðC1111C3333 � C2
1133Þ þ 2C1133C3313C1131 � C2

1131C3333 � C2
3313C1111 > 0;

e11 > 0; e11e33 � e213 > 0;

ð13Þ
which we shall assume to hold henceforth. The conditions (13) are guaranteed to hold if we make the usual
positive-definiteness assumptions on C and e. Thus all known results on existence, uniqueness and regular-
ity of solutions to elliptic systems are applicable to the present problem.

On using (7) in (1)3, (1)4, we find that the stresses and electric displacement vector are given by
T 2a ¼ T a2 ¼ 0;

T ab ¼ Cabcduc;d þ ecabu;c; T 22 ¼ C22cduc;d þ ea22u;a;
ð14Þ
and
Da ¼ eabcub;c � eabu;b; D2 ¼ e2abua;b � e2au;a ð15Þ
respectively. We observe from (14) and (15) that a non-zero axial stress T22 and axial electric displacement
D2 can occur, depending on the mechanical anisotropy and piezoelectric and electric permittivity constants.

As observed by Horgan and Miller (1994) for homogeneous elastic solids, anti-plane shear deformations
u1 = u3 = 0, u2 = u2(x1,x3) and the corresponding plane strain deformations u1 = u1(x1,x3), u3 = u3(x1,x3),
u2 = 0 can occur if C2abc = 0. Therefore, in elasticity, these conditions assure that both deformations can
occur and that these deformations are uncoupled. In piezoelectric solids (see, e.g., Borrelli et al., 2002)
the conditions C2abc = 0, eabc = 0 ensure the existence of the anti-plane state u1 = u3 = 0, u2 = u2(x1,x3),
u = u(x1,x3). We saw above that sufficient conditions for existence of the plane deformation
u1 = u1(x1,x3), u3 = u3(x1,x3), u2 = 0, u = u(x1,x3) are the conditions (7). Thus, in contrast with elasticity,
the conditions on the piezoelectric constants to ensure the existence of both states are different from each
other.

We note that plane deformations of the form u1 = u1(x1,x2), u2 = u2(x1,x2), u3 = 0, u = u(x1,x2) can
occur only for very few piezoelectric crystal classes (actually 6; 6m2), while the plane deformations consid-
ered here, i.e., deformations with the x3-axis as polarization direction, can occur for many crystal classes
(6mm, 4mm, 4, 6 and so on).
3. Plane deformations for the hexagonal crystal class 6mm (transversely isotropic)

Consider a piezoelectric material transversely isotropic about the poling axis, which we take as the x3-
axis. An example of such a material is lead–zirconate–titanate (e.g., PZT-5H). In our analysis it is conve-
nient to rewrite (13), (14) in the form (cf., Eringen and Maugin, 1990)
eij ¼ sijklT kl þ dkijEk;

Dk ¼ dkijT ij þ ekjEj;
ð16Þ
where eij, sijkl, dkij, eik are the components of the infinitesimal strain tensor, the compliance tensor, a new
piezoelectric tensor and the dielectric permittivity tensor measured at constant stress. The dimensions of
these quantities will be discussed in Section 7 in conjunction with some numerical results.

For our purposes it is more convenient to rewrite (16) by choosing stress and electric displacement fields
as independent variables. In the case of plane deformations (4) for a piezoelectric crystal 6mm, the new
equations so obtained can be reduced to the following matrix form (cf., Sosa, 1991):
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e11
e33
2e13

2
64

3
75 ¼

a11 a12 0

a12 a22 0

0 0 a33

2
64

3
75

T 11

T 33

T 13

2
64

3
75þ

0 b21
0 b22
b13 0

2
64

3
75 D1

D3

� �
ð17Þ

E1

E3

� �
¼ �

0 0 b13
b21 b22 0

� � T 11

T 33

T 13

2
64

3
75þ

d11 0

0 d22

� �
D1

D3

� �
;

where
a11 ¼
s211 � s212

s11
� d2

31ðs11 � s12Þ2

s11ðs11e33 � d2
31Þ

;

a12 ¼
s13ðs11 � s12Þ

s11
� d31ðs11 � s12Þðd33s11 � d31s13Þ

s11ðe33s11 � d2
31Þ

;

a22 ¼
s33s11 � s213

s11
� ðd33s11 � d31s13Þ2

ðs11e33 � d2
31Þs11

;

a33 ¼ s44 �
d2
15

e11
; b21 ¼

d31ðs11 � s12Þ
s11e33 � d2

31

; b22 ¼
d33s11 � d31s13
s11e33 � d2

31

;

b13 ¼
d15

e11
; d11 ¼

1

e11
; d22 ¼

s11
s11e33 � d2

31

;

ð18Þ
which are called the reduced material constants. As usual we use the compressed notation for the compli-
ances and the piezoelectric and dielectric permittivity tensors (see, e.g., Eringen and Maugin, 1990; Sosa,
1991). The first six and the last of the nine constants in (18) involve combinations of the mechanical and
piezoelectric material properties. Only b13 and d11 are purely piezoelectric constants. Thus (17) involves
a full coupling of mechanical and electrical effects. In writing (17), (18) we took into account that the plane
strain conditions imply
e22 ¼ e32 ¼ e12 ¼ 0; E2 ¼ 0; ð19Þ

and
T 22 ¼ � 1

s11
ðs12T 11 þ s13T 33 þ d31E3Þ. ð20Þ
Moreover, from the material symmetry properties of the 6mm crystals we have
D2 ¼ 0. ð21Þ

Finally as a consequence of the positive definiteness of the total energy density
2W ¼ 2W ðT;DÞ ¼ a11T 2
11 þ 2a12T 11T 33 þ a22T 2

33 þ a33T 2
13 þ d11D2

1 þ d22D2
3;
the reduced material constants satisfy
a11; a33 > 0; a11a22 � a212 > 0; d11; d22 > 0. ð22Þ

The governing equilibrium equations (11), (12) become
T ab;b ¼ 0; Da;a ¼ 0. ð23Þ
For our purposes (cf., Sosa, 1991), it is convenient to introduce two Airy functions: the stress function

U(x1,x3) and induction function W(x1,x3) such that
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T 11 ¼ U ;33; T 33 ¼ U ;11; T 13 ¼ �U ;13;

D1 ¼ W;3; D3 ¼ �W;1.
ð24Þ
Thus the equilibrium equations (23) are automatically satisfied, while the compatibility conditions
e11;33 þ e33;11 � 2e13;13 ¼ 0; E1;3 � E3;1 ¼ 0
give
a11U ;3333 þ ð2a12 þ a33ÞU ;1133 þ a22U ;1111 � b22W;111 � ðb21 þ b13ÞW;133 ¼ 0;

b22U ;111 þ ðb13 þ b21ÞU ;133 þ d22W;11 þ d11W;33 ¼ 0;
ð25Þ
provided U 2 C4(R), W 2 C3(R). The governing equations (25) are a coupled system of fourth and third-

order partial differential equations for U and W with coefficients involving the nine reduced constants de-
fined in (18).
4. Problem formulation for a piezoelectric 6mm strip

We suppose now that the cross-sectional domain R of Section 2 is taken to be the interior of the semi-
infinite strip R = {(x1,x3) : x1 > 0, �H < x3 < H}. The prescribed tractions t�a and surface charge D* are
taken to vanish on the long sides of the strip x3 = ±H, x1 > 0. Moreover, the prescribed boundary data
on the end x1 = 0 are necessarily ’’self-equilibrated’’. For this type of loading, it is assumed that the stresses
and electric displacement component D1 decay to zero as x1 ! 1.

The previous boundary conditions may be written in terms of the Airy functions U, W and then inte-
grated to yield, on using the self equilibration conditions (cf., Horgan and Miller, 1995 for the elastic case):
U ¼ 0; U ;3 ¼ 0; W ¼ 0 at x3 ¼ �H ;

U ¼ f0ðx3Þ; U ;1 ¼ f1ðx3Þ; W ¼ f2ðx3Þ at x1 ¼ 0;Z H

�H
f 00
0 ðx3Þdx3 ¼ 0;

Z H

�H
f 0
1ðx3Þdx3 ¼ 0;

Z H

�H
f 0
2ðx3Þdx3 ¼ 0;

U ;ab ! 0;W;a ! 0 uniformly in x3; as x1 ! 1;

ð26Þ
where f0, f1, f2 are prescribed functions that satisfy suitable smoothness conditions at the corners and the
prime denotes differentiation with respect to x3. Eqs. (25) and (26) constitute the fundamental boundary-

value problem associated with the semi-infinite 6mm piezoelectric strip in a state of plane deformation.
Following the well-known approach extensively used for the purely elastic problem, we seek solutions of

equations (25) satisfying (261) of the form:
Uðx1; x3Þ ¼ expð�kx1ÞF ðx3Þ; Wðx1; x3Þ ¼ expð�kx1ÞGðx3Þ; ð27Þ

where k is a complex constant and F, G are unknown functions such that
F ð�HÞ ¼ 0; F 0ð�HÞ ¼ 0; Gð�HÞ ¼ 0. ð28Þ

It is important to note that, on using (25), it is easy to prove that in (27) the coefficient of x1 in the expo-
nential functions must be the same for both Airy functions.

On substituting (27) into (25) we obtain
a11F IV þ k2ð2a12 þ a33ÞF 00 þ k4a22F þ k3b22Gþ kðb21 þ b13ÞG00 ¼ 0;

� k3b22F � kðb13 þ b21ÞF 00 þ k2d22Gþ d11G
00 ¼ 0.

ð29Þ
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Eqs. (29), subject to the boundary conditions (28) constitute an eigenvalue problem with eigenparameter k,
for the coupled system of ordinary differential equations for F(x3), G(x3). The first of (29) is of fourth-order
while the second is of second-order.

We note that equations (29) can be expressed as
L4F � L3G ¼ 0;

L3F þ L2G ¼ 0;
ð30Þ
where Li (i = 2,3,4) are ordinary differential operators of order 2 and 4 given by
L4 ¼ a11
d4

dx43
þ k2ð2a12 þ a33Þ

d2

dx23
þ k4a22;

L3 ¼ �k3b22 � kðb21 þ b13Þ
d2

dx23
; L2 ¼ k2d22 þ d11

d2

dx23
.

ð31Þ
If we eliminate G, Eqs. (30) are reduced to a single sixth-order ordinary differential equation for the function
F, namely
ðL4L2 þ L3L3ÞF ¼ 0; ð32Þ

which is
a11d11F VI þ k2½a11d22 þ d11ð2a12 þ a33Þ þ ðb21 þ b13Þ2�F IV þ k4½a22d11 þ d22ð2a12 þ a33Þ
þ 2b22ðb21 þ b13Þ�F 00 þ k6ða22d22 þ b222ÞF ¼ 0. ð33Þ
We observe that while (33) governs only the mechanical Airy function F, the coefficients involve all nine of
the constants defined in (18) and so there is still a coupling of mechanical and electrical effects. Since (33) is
a linear homogeneous equation with constant coefficients, its solutions are determined by the roots of the
characteristic polynomial equation, i.e.,
a11d11x6 þ k2½a11d22 þ d11ð2a12 þ a33Þ þ ðb21 þ b13Þ2�x4 þ k4½a22d11 þ d22ð2a12 þ a33Þ
þ 2b22ðb21 þ b13Þ�x2 þ k6ða22d22 þ b222Þ ¼ 0. ð34Þ
If we divide both sides of (34) by k6 and put l = x/k, then the left hand side of (34) becomes a polynomial
P(l). This polynomial has no real zeros because we can write
P ðlÞ ¼ ½ðb21 þ b13Þl2 þ b22�2 þ ðd11l2 þ d22Þ½a11l4 þ ð2a12 þ a33Þl2 þ a22�. ð35Þ

Since (22) hold, P(l) > 0,"l 2 R and so the zeros of P(l) are complex and conjugate. It is easy to see that
the roots of (34) are of the form
x1 ¼ ikb1; x2 ¼ �ikb1; x3 ¼ kða2 þ ib2Þ; x4 ¼ kða2 � ib2Þ;
x5 ¼ kð�a2 þ ib2Þ; x6 ¼ kð�a2 � ib2Þ;

ð36Þ
where b1, a2, b2 are real positive constants depending on the properties of the piezoelectric material.
Therefore the general solution of (33) is
F ðx3Þ ¼ C1 cosðb1kx3Þ þ C2 sinðb1kx3Þ þ ea2kx3 ½C3 cosðb2kx3Þ þ C4 sinðb2kx3Þ�
þ e�a2kx3 ½C5 cosðb2kx3Þ þ C6 sinðb2kx3Þ�; ð37Þ
where Ci, i = 1, . . . , 6 are integration constants. From (29) we can find the expression for G as
Gðx3Þ ¼ k�3½d22ðb21 þ b13Þ � b22d11��1

� d11a11F IV þ k2½d11ð2a12 þ a33Þ þ ðb21 þ b13Þ2�F 00 þ k4½d11a22 þ b22ðb21 þ b13Þ�F
n o

. ð38Þ
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where we assume that the coefficient [d22(b21 + b13) � b22d11] is non-zero. This certainly holds for the crys-
tals considered in the sequel. For the sake of brevity we omit the explicit expression for G that one obtains
on using (37) in (38).

On applying the boundary conditions (28) we can obtain the eigenvalues k of the problem (28), (29).
5. Eigenconditions for even and odd eigenfunctions

Just as in the purely elastic case for orthotropic or transversely isotropic materials (cf., Choi and Hor-
gan, 1977), it is convenient to study the eigencondition by separating the eigenfunctions into even and odd
functions.

Case (A) F an even function.
We note from (38) that G is also an even function. By virtue of (17)1, (24), e11 and e33 are even functions

of x3, while e13 is an odd function so that the deformations are symmetric. Moreover, by virtue of (17)2 and
(24), E1 and E3 are odd and even functions respectively.

We see that C2 = 0, C5 = C3, C6 = �C4. On setting c1 = C1, c2 = 2C3, c3 = 2C4, the function F can be
written as
F ðx3Þ ¼ c1 cosðb1kx3Þ þ c2 cosðb2kx3Þ coshða2kx3Þ þ c3 sinðb2kx3Þ sinhða2kx3Þ. ð39Þ

From (38) and (39) we obtain
Gðx3Þ¼ k½d22ðb21þb13Þ�b22d11��1

� c1A1 cosðb1kx3Þþðc2A2þc3A3Þcosðb2kx3Þcoshða2kx3Þþð�c2A3þ c3A2Þsinðb2kx3Þsinhða2kx3Þf g;
ð40Þ
where
A1 ¼ b4
1B1 � b2

1B2 þ B3; A2 ¼ B1ða42 � 6a22b
2
2 þ b4

2Þ þ B2ða22 � b2
2Þ þ B3;

A3 ¼ 2a2b2½2B1ða22 � b2
2Þ þ B2�;

B1 ¼ d11a11; B2 ¼ d11ð2a12 þ a33Þ þ ðb21 þ b13Þ2;
B3 ¼ d11a22 þ b22ðb21 þ b13Þ.

ð41Þ
On taking into account the boundary conditions (28), after some algebra we arrive at the following
eigencondition:
b1A3 sinðb1kHÞ½cosð2b2kHÞ þ coshð2a2kHÞ� þ cosðb1kHÞ½p1 sinð2b2kHÞ þ p2 sinhð2a2kHÞ� ¼ 0; ð42Þ

where
p1 ¼ a2ðA1 � A2Þ � b2A3; p2 ¼ b2ðA1 � A2Þ þ a2A3. ð43Þ

Thus the complex roots of (42) depend on the material constants through b1, a2, b2 defined in (36) and p1, p2
defined in (43) and (41).

Case (B) F an odd function.
We note from (38) that G is also an odd function. By virtue of (17)1, (24), e11 and e33 are odd functions of

x3, while e13 is an even function so that the deformations are antisymmetric. Moreover, by virtue of (17)2
and (24), E1 and E3 are even and odd functions respectively.

We see that C1 = 0, C5 = �C3, C6 = C4. On setting c1 = C2, c2 = 2C3, c3 = 2C4, the function F can be
written as
F ðx3Þ ¼ c1 sinðb1kx3Þ þ c2 cosðb2kx3Þ sinhða2kx3Þ þ c3 sinðb2kx3Þ coshða2kx3Þ. ð44Þ
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From (38) and (44) we obtain
Gðx3 ¼ k½d22ðb21 þ b13Þ � b22d11��1

c1A1 sinðb1kx3Þ þ ðc2A2 þ c3A3Þ cosðb2kx3Þ sinhða2kx3Þ þ ð�c2A3 þ c3A2Þ sinðb2kx3Þ coshða2kx3Þf g.
ð45Þ
On taking into account the boundary conditions (28), after some algebra we arrive at the following
eigencondition:
b1A3 cosðb1kHÞ½cosð2b2kHÞ � coshð2a2kHÞ� þ sinðb1kHÞ½�p1 sinð2b2kHÞ þ p2 sinhð2a2kHÞ� ¼ 0.

ð46Þ

We note that (42) and (46) admit a countable set of complex eigenvalues that appear in symmetric sets of
four because if k is an eigenvalue then �k; k;�k are also eigenvalues.

Let Le = {solutions k to (42) : Rek > 0}, Lo = {solutions k to (46) : Rek > 0} and denote by ken, k
o
n

respectively those elements of Le, Lo lying in the positive quadrant and ordered by increasing real part.
Note that
Le ¼ fkengn2N [ fkengn2N ; Lo ¼ fkongn2N [ fkongn2N .

At this point, in order to obtain a solution to the problem (25) and (26) we proceed formally. We seek a
solution to the problem as two series of eigenfunctions in the form
Uðx1; x3Þ ¼
X
ke2Le

expð�kex1ÞnkeF keðx3Þ þ
X
ko2Lo

expð�kox1ÞgkoF koðx3Þ;

Wðx1; x3Þ ¼
X
ke2Le

expð�kex1ÞNkeGke þ
X
ko2Lo

expð�kox1Þ� koGkoðx3Þ;
ð47Þ
where F ke ; F ko ;Gke ;Gko are the eigenfunctions corresponding to the eigenvalues ke; ko respectively and the
coefficients nke ; gko ;Nke ; � ko are to be determined from the data f0, f1, f2.

Here we will not investigate the convergence properties of the formal series (47) (which would require
additional suitable restrictions on the data) but focus on our objective of obtaining results on the rate of

exponential decay of U and W and so of the stresses and Da. On assuming completeness of the eigenfunc-
tions (see Gregory, 1980a,b for a discussion of this issue for the isotropic elastic case), from (47) and (27) we
can conclude that, as x1 ! +1, the functions U, W decay as e�kx1 where k is the real part of the eigenvalue k
with the smallest positive real part.
6. Asymptotics of the eigenvalues

In this section we find the asymptotic values of the eigenvalues of (42) and (46) with positive real and
imaginary parts. We write the eigenvalues as ken ¼ ken þ iyen; kon ¼ kon þ iyon respectively. Such results are use-
ful in the numerical solution of (42) and (46) to provide initial estimates for the roots if iterative schemes are
used.

First of all we consider the eigenvalue ken and notice that Eq. (42) can be written as
b1A3 sinðb1k
e
nHÞ½cosð2b2k

e
nHÞ þ cosð2a2kenH iÞ� þ cosðb1k

e
nHÞ½p1 sinð2b2k

e
nHÞ � ip2 sinð2a2kenH iÞ� ¼ 0.

ð48Þ

We use the following asymptotic formulas:
sinðbkenHÞ � � e�ibkenH

2i
; cosðbkenHÞ � e�ibkenH

2
; ð49Þ
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where b is complex and fn � gn means that limn!1
fn
gn
¼ 1. If we write the asymptotic expressions for the

functions in (48) then we obtain
e�2kenHða2þib2Þ b1A3 þ p1
b2
1A

2
3 þ p22

ðb1A3 þ ip2Þ � �1. ð50Þ
Taking the logarithm we finally obtain the following asymptotic formula for eigenvalues of the symmetric
functions:
ken �
a2 � ib2

2Hða22 þ b2
2Þ
½ln qþ ihþ ð1þ 2nÞpi�; n 2 Z; ð51Þ
where
q ¼ jb1A3 þ p1jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
1A

2
3 þ p22

q and h ¼ arctan
p2

b1A3
and Z denotes the set of all positive or negative integers. From this expression, we find
ken �
1

2Hða22 þ b2
2Þ
½a2 ln qþ b2hþ b2ð1þ 2nÞp�; n 2 Z; ð52Þ
from which we can calculate the asymptotic decay rate.
Similarly, for antisymmetric deformations, we find that:
kon �
a2 � ib2

2Hða22 þ b2
2Þ
½ln qþ ihþ 2npi�; n 2 Z; ð53Þ

kon �
1

2Hða22 þ b2
2Þ
½a2 ln qþ b2hþ b22np�; n 2 Z; ð54Þ
from which we can calculate the asymptotic decay rate.
Since in (52) and (54) the sign of a2 lnq + b2h depends on the particular piezoelectric material being con-

sidered, the value of n that minimizes ken; k
o
n cannot be established a priori.
7. Numerical examples

Here we calculate the eigenvalues from the eigenconditions (42) and (46). We consider some piezoelectric
ceramics of class 6mm: PZT ceramics and Ceramic-B. The material properties of the selected piezoceramics
used in the computation are given in Table 1 (see Ruan et al., 2000 and the references cited therein for the
values of the material constants).

After calculating the complex roots of (35), we determine the eigenvalues in a very simple manner, i.e., by
computing the points of intersection of the curves obtained by equating to zero the real and imaginary parts
of (42) and (46). An alternative method would be to use an iterative scheme using the asymptotic results
(51) and (53) to provide initial values. The characteristic decay length L is defined as the length over which
the Airy functions, and hence the stress and the electric displacement vector, decay to 1% of their values at
x1 = 0 and so L ¼ ln 100

k . This provides a measure of the distance from the end beyond which end effects are
negligible. In Table 2 the decay rates and decay lengths for the four selected piezoceramics are presented for
the case of symmetric and anti-symmetric deformations.

In Table 3, we list the asymptotic values of the decay rates and decay lengths computed from (52) and
(54). For the materials under consideration, we have n = 0 or n = �1. On comparison with the exact values



Table 1
Elastic, piezoelectric and dielectric constants for some piezoceramics

PZT-5H PZT-5 PZT-4 Ceramic-B

Elastic compliance (10�12 m2/N)

s11 16.5 16.4 12.4 8.6
s12 �4.78 �5.74 �3.98 �2.6
s13 �8.45 �7.22 �5.52 �2.7
s33 20.7 18.8 16.1 9.1
s44 43.5 47.5 39.1 22.2

Piezoelectric constant (10�12 C/N)

d31 �274 �172 �135 �58
d33 593 374 300 149
d15 741 584 525 242

Relative permittivity (e0 = 8.85 · 10�12 F/m)

e11/e0 1700 1730 1470 1000
e33/e0 1470 1700 1300 910

Table 2
Decay rate and characteristic decay length for the selected piezoceramics

Decay rate k (even) Decay rate k (odd) Characteristic decay length L (even) Characteristic decay length L (odd)

PZT-5H 1.104/H 0.436/H 2.083 · 2H 5.275 · 2H
PZT-5 1.092/H 2.811/H 2.106 · 2H 0.818 · 2H
PZT-4 1.337/H 2.125/H 1.720 · 2H 1.082 · 2H
Ceramic-B 1.016/H 2.638/H 2.263 · 2H 0.872 · 2H

Table 3
Asymptotic decay rates and characteristic decay lengths for the selected piezoceramics

Decay rate k (even) Decay rate k (odd) Characteristic decay length L (even) Characteristic decay length L (odd)

PZT-5H 1.864/H 0.428/H 1.234 · 2H 5.373 · 2H
PZT-5 1.230/H 2.610/H 1.870 · 2H 0.881 · 2H
PZT-4 1.210/H 2.571/H 1.900 · 2H 0.895 · 2H
Ceramic-B 1.330/H 2.819/H 1.730 · 2H 0.816 · 2H

954 A. Borrelli et al. / International Journal of Solids and Structures 43 (2006) 943–956
given in Table 2, we see that the asymptotic results provide reasonably accurate estimates for their exact
counterparts.
8. Conclusions

The decay rates and decay lengths for some engineering piezoceramic materials have been established.
The decay lengths for the materials discussed here are larger than those of Ruan et al. (2000) where an
approximation is introduced in which the authors neglect the last term in Eq. (25)1, the second term in
Eq. (25)2 and T22 is taken to be equal to zero. The decay lengths are also larger than those of isotropic elas-
tic materials, for which it is known (see, e.g., Timoshenko and Goodier, 1970, pp. 61–61) that
L(even) = 1.09 (2H) while L(odd) = 0.61 (2H). It is worth noting from Table 2 that, except for PZT-5H,
all the materials considered are such that L(even) > L(odd), as in the isotropic elastic case. Among the
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materials considered here, PZT-5H has the largest decay length (for anti-symmetric deformations) and it is
over five times the strip width. Thus, in general, piezoelectric end effects penetrate much further into the strip

than their isotropic elastic counterparts, illustrating once again that application of the classical Saint-Ve-
nant�s principle for isotropic elastic materials must be significantly modified when used outside its original
context.
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